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We propose the multipoint Metropolis algorithm as an extension of the orientational-
bias Monte Carlo of Frenkel and Smit. A ratio statistics similar to that in the Metropo-
lis algorithm is introduced to maintain the detailed balance. The multipoint idea can
be applied to improve the efficiency of a general Markov chain-based Monte Carlo
algorithm. To illustrate, we describe two variations of the idea—the random-grid
Metropolis and the multipoint Hybrid Monte Carlo—and apply them to a number of
examples. c© 2001 Academic Press
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1. INTRODUCTION

Computer simulation and optimization for molecular structures and dynamics have been
of great interests to chemists, physicists, and biologists. One of the central tools used for
these endeavors is Monte Carlo. Recently, statisticians began to appreciate the importance of
Monte Carlo methods and have extended many Monte Carlo techniques developed by physi-
cists and structural chemists to solve a broader array of problems, e.g., those in Bayesian
inference, artificial intelligence, genetics, computational biology, and others. A major part
of these computational problems can be summarized abstractly into the following mathe-
matical setting: A system is parameterized by a vectorx and characterized by a probability
distributionπ(x), which is known up to a normalizing constant (i.e., functionq(x) = Zπ(x)
is known, but the constantZ, often called the partition function, is unknown). It is of interest
to estimate the mathematical expectation of a given functionh(·), i.e., the value of

〈h〉 =
∫

h(x)π(x) dx.
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If random samplesx1, x2, . . . , xN can be drawn fromπ(x), one can approximate the above
integral by the average of theh(xi ).

Among all the methods that enable one to draw random samples from an arbitrarily
given distribution, those based on Markov chain theory are perhaps most widely used.
The construction proposed by Metropoliset al. [13] and modified by Hastings [7], often
referred to as the Metropolis–Hastings (M–H) algorithm, is the most fundamental building
block for all Markov chain Monte Carlo (MCMC) algorithms. The M–H algorithm can be
implemented as follows:

• Suppose at thet-th iteration we have a samplext . At the (t + 1)st iteration, a “pertur-
bation” y of the current state is proposed. Operationally this can be achieved by drawing
from a Markov transition functionT(y | xt ) (also called the proposal function).
• We letxt+1 = y with probability

r = min

{
1,
π(y)T(xt | y)
π(xt )T(y | xt )

}
,

and letxt+1 = xt with probability 1− r . We callr the M–H ratio.

Theoretically, the M–H algorithm can be applied to an arbitrary unnormalized distribution
regardless of its dimension. However, in most applications, the Markov chain generated by
the M–H algorithm can be trapped indefinitely in a local mode so that the equilibration
time of the sampler can be unacceptably long. One remedy is to enable the sampler to take
larger steps. Under the M–H framework, this idea amounts to let the proposal function
T(· | ·) to make more drastic perturbations on the current state. Although this may allow
the sampler to escape from certain local modes, unavoidably a more violent change inxt

is much less likely to be accepted, which also hurts the efficiency of the algorithm. The
multipoint method introduced in this article aims at alleviating this conflict of interest.

One of the most effective means for improving equilibration time of a MCMC sampler is
parallel tempering [3, 5], in which one runs in parallel several independent Markov chains
with different temperature parameters and proposes temperature swapping periodically.
However, in cases where one is interested only in the simulation at a fixed temperature, it
is not clear whether the improvement justifies the additional complexity and computation
of parallel tempering. The multipoint method, on the other hand, is a simple generalization
of the Metropolis rule and is perhaps more suitable for a moderate system. Additionally,
one can combine the multipoint idea with parallel tempering to design more innovative
algorithms such as evolutionary Monte Carlo [9].

The multipoint method is closely related to the “multiple-try Metropolis” (MTM) pro-
posed in [10], both of which can be viewed as generalizations of the “orientational-bias
Monte Carlo” (OBMC) method described in Frenkel and Smit [4]. In both MTM and
OBMC, one is allowed to propose multiple independent trial samples from a proposal
functionT(· | ·). As a consequence, one can afford to employ a proposal transitionT that
covers a relatively larger region in the state space. Our new method further allows one
to propose multipledependenttrial points and to reuse some old proposals. These extra
features simplify the computation in MTM and extend the applicability of the multipoint
idea. In particular, we show that the method can be used to improve a hybrid Monte Carlo
(HMC) algorithm.
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2. MULTIPOINT METROPOLIS METHOD

In the M–H algorithm, a new trial state is generated from the proposal transition function,
and then a decision is made on whether to accept the new state based on a likelihood ratio.
In the multipoint algorithm, we allow the algorithm to make multiple proposals and then
choose a good one among them.

Suppose the current state isx, we proposen candidates by samplingy1 ∼ T1(· | x), y2 ∼
T2(· | x, y1), . . . , andyn ∼ Tn(· | x, y1, . . . , yn−1). For briefness, we lety[1: j ]=(y1, . . . , y j )

and lety[ j :1] denote the vector with the reverse order, i.e.,y[ j :1] = (y j , y j−1, . . . , y1). We
suppress all the subscripts forT . That is, the joint sampling distribution ofy[1: j ] is written
as

T
(
y[1: j ]

∣∣ x) ≡ T(y1 | x)× · · · × T
(
y j

∣∣ x, y[1:( j−1)]
)
, (1)

with the understanding that theT(y j | x, y[1: j−1]) are in fact different functions for different
j . Finally, we define a weight function

ω j
(
x, y[1: j ]

) = π(x)T(y[1: j ]

∣∣ x)λ j
(
x, y[1: j ]

)
.

It is seen thatπ(x)T(y[1: j ] | x) is a joint distribution ofx andy[1: j ] (but not the stationary
one). Here, functionλ j can be any bounded, positive, andsequentially symmetricfunction,
where “sequentially symmetric” means that

λ j
(
x, y[1: j ]

) = λ j
(
y[ j :1], x

)
.

Again, in the remaining part of the article, we suppress all the subscripts for functionsλ j

andω j . The details of the multipoint algorithm follow.

Multipoint Metropolis Algorithm

• Drawn trial points,y1, . . . , yn according to the joint proposal distributionT , as defined
in (1); computeω(y[ j :1], x) for j = 1, . . . ,n.
• Selecty among the trial set{y1, . . . , yn} with probability proportional toω(y[ j :1], x),

j = 1, . . . ,n. Supposey = yk has been selected.
• Construct a “reference set”{x∗k+1, . . . , x

∗
n} by samplingx∗j+1 from

T
( · ∣∣ y[k:1], x, x∗[k+1: j ]

)
,

for j = k, . . . ,n− 1. For notational simplicity, we namex∗j = yk− j for j = 1, . . . , k− 1
andx∗k = x. Thus, the reference path{x∗1, . . . , x∗n} is like a reversal of the forward path
{y1, . . . , yn} and the two are “annealed” at the middlek+ 1 positions (like a double stranded
DNA sequence with two “sticky” ends).
• Accepty with probability

rmp = min

{
1,

n∑
j=1

ω
(
y[ j :1], x

)/ n∑
j=1

ω
(
x∗[ j :1], y

)}

and reject it with probability 1− rmp. The quantityrmp is called the multipoint Metropolis
ratio.
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FIG. 1. Graphical illustration of a random-grid Metropolis step. In this case,n = 5, k = 3.y = y3 was selected
as candidate. Then we namex∗1 = y2, x∗2 = y1, x∗3 = x.

Figure 1 gives a cartoon illustration of the algorithm. Compared with OBMC and MTM,
a new feature of our algorithm is that the middlek+ 1 points are reused in the reference
set. The idea of reusing old configurations in computing Metropolis-like ratios has been
proposed earlier in [2] in a different setting.

The simplest choice of the symmetric function isλ(x, y[1: j ]) ≡ 1. Intuitively, the detailed
balance condition is maintained because the backward “reference path” compensates the
forward path, and the favorable choice ofy is counterbalanced by requiring that the reference
pathx∗j has to pass through the starting pointx. In the Appendix, we give a rigorous proof
showing that the above multipoint method satisfies the “super” detailed balance condition.

When the proposal transition is sequentially symmetric, i.e.,

T
(
y[1: j+1]

∣∣ y0
) = T

(
y[ j :0]

∣∣ y j+1
)
,

we can chooseλ(x, y[1: j ]) = 1/T(y[1: j ] | x), then the algorithm can be simplified asω(y[ j :1],

x) ∝ π(yj ), a form similar to the one in [4]. That is, we can selecty among the trial set
{y1, . . . , yn} with probability proportional toπ(y j ), j = 1, . . . ,n and then accepty with
probability

rmp = min

{
1,

n∑
j=1

π(y j )

/
n∑

j=1

π(x∗j )

}
.

Note that a sequentially symmetric proposal can be derived by composing a number of
symmetric Markov transition steps, i.e.,

T
(
y[1:n]

∣∣ x) = K1(y1 | x)K2(y2 | y1) · · · Kn(yn | yn−1),

whereK j (y | x) = K j (x | y) and is a conditional probability function.
The multipoint method is quite general. At one extreme, it is entirely possible that the

transition proposal is a semi-deterministic function (see Sections 3 and 4) in which all
the generated variables are correlated. An especially useful scenario is that the multiple
candidates are generated by a Markov chain. For example, one may have a favorite transi-
tion functionK (y | x) which is a “cheap” approximation of the desirable transition kernel
A(y | x) (whose equilibrium distribution isπ ). Then one can generate a few candidates from
composingK and use the multipoint method to select among them.

At the other extreme, all the multiple trial points can be generated independently, con-
ditional onx and possibly another random variable, as in OBMC [4] and MTM [10]. For
example, the proposal set{y1, . . . , yn} can be independent and uniform draws from the
radius-γ sphere centered atx, whereγ is generated from a distribution independent of
x. Then, after selecting the candidatey j , one cannot reuse the old draws. But one can
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still implement the multipoint method by generatingn− 1 independent and uniformly dis-
tributed samples from the sphere centered aty j with the same radiusγ . Mathematically,
the generation ofy[1:n] in the above procedure can be described as

T
(
y[1:n]

∣∣ x, γ ) = T(y1 | x, γ ) · · · T(yn | x, γ ),

and the acceptance–rejection decision is made conditional onγ . The proposal process
described by (1) can also be generalized to allow for an additional “ancillary” variableγ ,
i.e.,y[1:n] can be generated from

T
(
y[1:n]

∣∣ x, γ ) = T(y1 | x, γ ) · · · T
(
yn

∣∣ x, y[1:(n−1)], γ
)
,

and the multipoint ratio be computed conditional onγ . The proof of its correctness is similar
to that in Section A.2.

Weighted Multipoint Metropolis

Generating more candidates to choose from does not necessarily mean that we will end up
“walking farther” at each iteration. Intuitively, those trial points that are close to the starting
positionx tend to have a higher acceptance probability than those points that are farther
away fromx. In order to force the chain to explore a greater area, we can add weights to
the generated candidates. Those candidates farther from the starting pointx receive greater
weight than those that are closer tox. That is, we can define

ω̃
(
x, y[1: j ]

) = u jω
(
x, y[1: j ]

)
, (2)

and use ˜ω in the place ofω in the multipoint algorithm previously defined. Typical choices
can beu j = j α or u j = log j , both giving increasing preference to points “farther” away.
In fact, this flexibility has been reflected in the original multipoint algorithm for that we can
chooseλ j freely. Expression (2) makes it explicit that we put artificially unequal weights
to the multiple candidates. Our experiences show that this weighting strategy is very useful
for improving a HMC method (Section 4).

3. RANDOM-GRID METROPOLIS

As a demonstration of how one can use the multipoint strategy, we describe a method,
the random-grid Metropolis, which is useful when the state space is a Euclidean space.

Random-Grid Metropolis

• Sample a distancer and a direction (unit vector)Ee from their proposal distributions,
respectively. Construct then candidates as

y j = x+ j · r · Ee, j = 1, . . . ,n.

• Selecty among the trial set{y1, . . . , yn} with probability proportional toπ(y j ), j =
1, . . . ,n. Suppose the final selection isy = yk. Then we let

x∗j = y− j · r · Ee for j = 1, . . . ,n.
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FIG. 2. Illustration of two-sided random-grid Metropolis chain. In this case,n = 4, k = 3.y = y3 was selected
as candidate. Then we namex∗1 = y4, x∗−1 = y2, x∗−2 = y1, x∗−3 = x, x∗−4 = y−1.

Therefore,x∗j is equal toyk− j for j < k and tox− (k− j ) · r · Ee for j ≥ k.
• Accepty with probability

rrg = min

{
1,

n∑
j=1

π(y j )

/
n∑

j=1

π(x∗j )

}
,

and reject it with probability 1− rrg.

Figure 1 shows how a random-grid step is implemented. As a small variation of the
random-grid method, we can also take candidates from both sides of the random direction,
which can sometimes be more efficient. More precisely, after generatingr andEe, we can
construct 2n candidates as

y− j = x− j · r · Ee, j = 1, . . . ,n,

y j = x+ j · r · Ee, j = 1, . . . ,n.

Then, after selecting a candidatey from the candidate set, we construct the reference set as

x∗j = y+ j · r · Ee,

for j = ±1, . . . ,±n. A graphical illustration is given in Fig. 2.
The proposal function forr can be any proper density function supported on the interval

[0, A] (whereAcan be infinite). From our experience, a uniform distribution, an exponential
distribution, or another form of the Gamma distribution are convenient choices. In contrast,
the most appropriate choice of the proposal function forEeis perhaps the uniform distribution
because in most applications we do not have a strong reason to prefer one direction to another.

Since only the step size and the direction are random, it is clear that the resulting candidates
from the random-grid method are not mutually independent. For a better exploration of local
landscape of the target distribution, one may want to insert a few standard metropolis steps
between multipoint iterations.

4. MULTIPOINT HYBRID MONTE CARLO

4.1. Basic Hybrid Monte Carlo Algorithm

Hybrid Monte Carlo (HMC) was first proposed in [1] to deal with numerical simulation
problems in lattice field theory. Unlike standard molecular dynamics algorithms, the goal
in HMC is to sample from the Boltzmann distribution

π(q) ∝ exp(−E(q)).
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Here, theN-dimensional vectorq describes the system’s (positional) configuration, and
E(q) is the potential energy function.

The HMC introduces a fictitiousN-dimensional momentum vectorp and the Hamiltonian
H(p, q) = E(q)+ 1

2|p|2. If we can sample (p, q) jointly from π(p, q) ∝ exp(−H(p, q)),
then the resultingq follows the desired Boltzmann distribution. Because a dynamical move
of the system based on the Hamiltonian equations,

dq
dτ
= ∂H

∂p
= p, and

dp
dτ
= ∂H

∂q
= −∇E(q),

is time-reversible, volume-preserving, and maintains the constant total energy, it leaves the
joint distributionπ(p, q) invariant. Ideally, one can simulate(p, q) by (a) drawingp from
its marginal distribution (which is Gaussian), and (b) evolving the system according to the
Hamiltonian equations for a long period of time.

A popular method for simulating the Hamiltonian dynamics is theleap-frog algorithm,
in which each leap-frog step is time-reversible and volume-preserving [1]. Since each
leap-frog step is a discretization of the continuous-time Hamiltonian equations, it does not
maintain a constant total energy, resulting in “nonphysical” moves. The following HMC
method uses the Metropolis rejection rule to correct for the biases resulting from dis-
cretization.

• Generate the momentum vectorp = (p1, . . . , pN) from the standard Gaussian distri-
bution, i.e., draw

pj ∼ N(0, 1), for j = 1, . . . , N.

• A proposal, (p′, q′), is generated from applyingn iterations of the leap-frog algorithm
to the current state (p, q).
• Accept (p′, q′) with r = min[1, exp(−1H)], where1H = H(p′, q′) −H (p, q).

Note that this algorithm samplesp andq jointly although we are only interested inq. Vector
p can be viewed as an auxiliary variable.

4.2. Using Multipoint Rule in Hybrid Monte Carlo

As described in the previous section, there aren dynamical steps implicated by a deter-
ministic scheme, e.g., a leap-frog algorithm, between any two stochastic updates of a HMC
algorithm. The multipoint technique can be directly applied here. Since then dynamical
steps are “time-reversible,” it is easy to generate a “reverse” path as in the general multipoint
method. Since the number of dynamical steps (n) may be a large number, treating thesen
candidates equally as in the standard multipoint method may not be a good idea. Addition-
ally, computing all theω functions can be a drag to the overall computational efficiency. A
simple modification we apply here is to consider only the lastm of thesen candidates (this
is equivalent to giving 0 weights to the beginningn−m candidates). For example, we may
takem= n/4.

Suppose we have the configuration (pt , qt ) at present. Definex = (pt , qt ). The multipoint
HMC update for step (t + 1) is as follows.
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Multipoint HMC Algorithm

• From the starting statex, we conductn leap-frog iterations to obtainy1, . . . , yn.
• Select one candidatey = yn−k, say, from the candidate setyn−m+1, . . . , yn according

to their Boltzmann probabilities. Here 0≤ k ≤ m− 1.
• From x, run k-steps of inverse leap-frog iteration (i.e., use the negated momentum

variable−pt to start the leap-frog) to obtainy−1, . . . , y−k.
• Accepty with probability

rmph= min

{
1,

∑m
j=1 exp(−H(yn−m+ j ))∑m
j=1 exp(−H(y−k−1+ j ))

}
,

and reject with probability 1− rmph.

The correctness of the algorithm can be seen from the facts that (a) the total energyH (y)
is not affected by negating the momentum variable; (b) the leap-frog moves are volume-
preserving; and (c) the leap-frog moves are “time-reversible.” That is, if we negate the
momentum variable foryn and applyn+ k leap-frog steps, we will gety−k at the end.
Intuitively, using the leap-frog transition is like using a symmetric Markov chain transition.

We can add further weights to them candidate states considered in the multipoint HMC.
That is, we can assign weightu j to statesyn−m+ j andy−k+m− j , for j = 1, . . . ,m. The
purpose of adding weight is to give increasingly higher preference to states near the end of
the leap-frog trajectory. Convenient choices foru j are

√
j and logj ; u j is as in Eq. (2).

An algorithm that considers multiple trial points in HMC has been proposed earlier by
Neal [14] who named it the “window” HMC. Rather than comparing only the end state of
the leap-frog updates, Neal considered a comparison between the total energies of a window
of states at the end of the trajectory and that at the beginning of the trajectory. After one
of the two windows is chosen, a particular state within the selected window is drawn with
probability proportional to its Boltzmann distribution. Figure 3 illustrates this algorithm.
In Section 5.2, we compared Neal’s method with ours for the simulation of uncoupled
oscillators.

Trajectory lengthn and number of multiple trial pointsm need to be selected be-
forehand, and kept to be fixed throughout the whole simulation. However, a new step
size ε used for leap-frog iterations has to be drawn after each acceptance/rejection de-
cision. If both trajectory lengthm and step sizeε are fixed, then the result will show
a periodic and circular pattern, it can also delay the convergence. See [11] for relevant
discussion.

In Neal’s window algorithm, the length of the inverse trajectoryk is sampleduniformly
from a discrete set{1, 2,. . . ,W}, whereW is window size. Whereas in the multipoint

FIG. 3. Graphical illustration of Neal’s “window” HMC.
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method, the inverse trajectory lengthk is equal to the number of dynamic steps beyond
the selected candidate. The later is intuitively more appealing. Additionally, we can further
tune the weighting parameteru j to bias the sampling distribution of the candidatey in favor
of the end of the trajectory.

5. EXAMPLES

5.1. Simulation from a Mixture Gaussian Distribution

Random-grid Monte Carlo is most useful for sampling from a multimodal distribution
defined on a Euclidean space because the method allows one to explore more thoroughly
along a randomly chosen direction. In a sense, each of the random-grid moves behaves like
the conditional update in a heat-bath algorithm (or, theGibbs samplerin statistics literature).
We illustrate here how the random-grid method can be applied to sample from a mixture
Gaussian distribution.

Consider simulating from a two-dimensional mixture Gaussian distribution

.34× N2(0, I2)+ .33× N2

{(−9

−9

)
,

(
1 .9
.9 1

)}
+ .33× N2

{(
10

10

)
,

(
1 −.9
−.9 1

)}
,

which is similar to the ones used by Gilkset al. [6] and Liuet al. [10]. Compared to theirs, the
distribution shown here is more difficult to sample from by a standard Metropolis algorithm
because the mean vectors are separated by a larger distance in each dimension.

Both the standard Metropolis and the random-grid Monte Carlo methods were applied
to this example. In particular, we used the two-directional random-grid method withn = 4
along each direction. The length of each step is generated from an exponential distribution
with mean 3. A total of 50,000 iterations were conducted for both the Metropolis and
the random-grid methods. Although eight candidates were considered in each iteration,
the random-grid method consumed only twice as much computing time as the standard
Metropolis. This is mainly because that the evaluation ofπ(x) is easy.

A comparison of the two methods in terms of the histograms and autocorrelation plots of
their Monte Carlo samples is shown in Fig. 4. The left panel is for the standard Metropolis
and the right panel is for the random-grid method. The histogram on the left panel showed
unequal mass among the three modes, suggesting that the equilibration time for the algorithm
is very long. The two plots on the bottom panel show the autocorrelations up to lag 30 for
the two methods.

We also comparedIntegrated Autocorrelation Time (IAT)of the two methods, where the
IAT is defined as12 +

∑∞
j=1 ρ j , withρ j being the lag-j autocorrelation of the Markov chain.

After taking computation time into account, our simulation showed that the IAT was 32.6
for the Metropolis algorithm, after adjusting for the computational cost (2 to 1 ratio), and
5.2 for the random-grid method. This translates to a six-fold improvement. The random-grid
is still more than two-fold better than the Metropolis even if we adjust the extra cost to a 6
to 1 ratio.

5.2. Uncoupled Oscillators

The behavior of the standard HMC algorithm for systems of uncoupled oscillators has
been analyzed in detail by Kennedy and Pendleton [8]. Neal [14] used the same example to
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FIG. 4. A comparison of the results obtained by the standard Metropolis method and that by the random-grid
method. The autocorrelation functions (ACF) has been adjusted to account for unequal computational costs. Each
lag in the ACF represents 40 iterations for the Metropolis algorithm and 20 iterations for the random-grid method,
respectively.

study the performance of his “window” HMC method. In this example, the system contains
d uncoupled oscillators with frequenciesν j for j = 1, . . . ,d. The potential energy function
for such a system is

E(q) = 1

2

d∑
j=1

ν2
j q

2
j . (3)

Thus, in the Boltzmann distribution with this energy function, eachqj is independent and
distributed as a Gaussian with zero mean and standard deviation 1/ν j . Since the HMC
operation is invariant of translation and rotation of the coordinates, the above system can
represent any multivariate Gaussian distribution.

In this example, we deliberately make the target distribution difficult to simulate by
selecting theν j between 10 to 1000, a much larger range than the one used in [14]. The
ratioνmax/νmin, whereνmax andνmin are the largest, and the smallest of theν j , respectively,
is regarded as a measurement of the inherent difficulty.

From our simulation result, the multipoint HMC method proposed in this paper outper-
formed Neal’s “window” HMC method, in terms of both the autocorrelation time and the
actual computation time. In most cases, the weighted multipoint method is even better than
its unweighted counterpart. The acceptance rate was tuned to be almost the same across all
these methods.

Three methods are compared in Fig. 5: methodN refers to Neal’s “window” HMC;
methodM the multipoint HMC proposed in this paper; and methodMW the multipoint
HMC with weight. The left panel shows a side-by-side box plot about the IAT values for 30
cases we simulated. From this plot, we can see that the general performance ranking isMW
Â M Â N. The right panel shows a scatter plot, in which the x-axis is the IAT values for
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FIG. 5. Comparison of autocorrelation for methodN. M andMW .

methodM . They-axis corresponds to the difference in IAT value, between methodsN and
M , M andMW , respectively. The fan shape of the scatter plot shows that the improvement
increases when the IAT score is larger.

In order to make sure that the total leap-frog steps in all three methods are comparable,
we set trajectory length to be 45 for methodM andMW , 50 for methodN. Window size is
20. Step sizeε is sampled uniformly from interval (0, 2/νmax). The dimension of the system
was taken to be 200.

Another experiment was performed for a system of 1600-dimensional uncoupled oscil-
lators. We compared four different methods: the standard HMC, Neal’s “window” HMC,
multipoint HMC, and multipoint HMC with weight, corresponding to four panels from top
to bottom. We also tested different settings of two adjustable parameters: one is the number
of leap-frog stepsn, which were set at 100, 50, and 30, respectively; the other parameter
controls maximum length of a single leap-frog move, denoted asεmax, which were set at
.75, 1.0, 1.5, and 2.0. The leap-frog step length is sampled uniformly from (0, εmax/νmax).
We summarized the computation times (for 50,000 iterations under each setting), accep-
tance rates, and the IATs in Table I. It is seen from the table that one can obtain a very
efficient setting (IAT= 1.11) by step size, number of steps, and the weights in the multi-
point selection.

6. DISCUSSION

In this paper, we propose the multipoint method as a novel extension of the orientational-
bias Monte Carlo, which can be used to alleviate the local-mode trapping problems en-
countered in all the Metropolis-type algorithms. In the new method, multiple correlated
candidates are proposed simultaneously, from which one is selected judiciously to compare
with the current configuration. To encourage the acceptance of those candidates that are
“farther” away from the current state, a weight function can be used to emphasize each
candidate’s importance.

Two applications of the general multipoint idea, the random-grid method and the mul-
tipoint HMC, are described. In the random-grid method, the multiple candidates lie with
equal spacing along a randomly chosen direction. In multipoint HMC, the multiple candi-
dates are just the points near the end of a leap-frog trajectory. It has been shown recently
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TABLE I

Comparison of Simulation Results

100 50 30
n
εmax t AR IAT t AR IAT t AR IAT

Standard HMC
0.75 92.9 88.0 12.35 52.0 86.5 20.97 31.1 88.2 27.58
1.0 89.7 81.0 7.35 52.1 79.4 12.49 31.1 76.5 23.75
1.5 91.7 55.9 11.61 51.4 53.3 19.35 31.0 53.3 22.50
2.0 92.7 40.0 11.19 52.0 41.0 19.66 31.6 42.0 28.07

Neal’s “window” HMC
0.75 108.4 95.6 8.50 57.7 96.2 14.65 32.5 94.7 27.31
1.0 107.0 88.0 8.32 59.2 90.5 13.86 32.6 92.7 20.90
1.5 107.0 72.2 5.73 58.5 74.9 12.07 32.6 68.8 20.90
2.0 108.2 53.7 7.31 56.7 51.4 13.67 32.9 51.4 19.67

Multipoint HMC
0.75 112.3 96.9 10.57 64.7 96.7 21.46 34.9 95.3 23.50
1.0 113.04 94.6 5.04 63.0 93.7 17.15 33.7 91.7 23.30
1.5 114.7 78.3 4.32 63.4 76.0 16.78 35.4 72.6 22.80
2.0 116.5 61.2 7.61 63.3 57.0 16.86 35.4 54.5 23.38

Weighted Multipoint HMC
0.75 108.8 96.5 9.20 58.2 94.4 20.63 33.8 94.7 24.83
1.0 107.2 87.4 1.11 57.8 91.2 14.74 33.6 93.3 19.79
1.5 107.2 72.5 6.76 58.1 74.4 16.05 33.6 71.4 23.57
2.0 107.6 53.7 3.25 57.5 52.7 9.86 34.3 55.2 23.73

that the Nośe–Hoover chain method [12] generally outperforms the HMC in simulating
Hamiltonian dynamics. It is thus desirable to apply the multipoint idea to this more ad-
vanced technique.

The multipoint is a general methodology to improve the local search capability of a
MCMC sampler and can be combined with various other powerful methods, such as parallel
tempering [5] and adaptive directional sampling [10], to produce more efficient Monte Carlo
algorithms [9].

APPENDIX: PROOFS OF THE DETAILED BALANCE

A.1. The General Multipoint Method

Let A(y | x) be the actual transition function and letyk = y be the candidate chosen
from the multiple trial points. As described in Section 2, the backward “reference set”
is denoted as{x∗1, . . . , x∗n}, wherex∗j = yk− j for j = 1, . . . , k− 1; x∗k ≡ x; and x∗l+1 ∼
Tl+1(· | y, x∗[1:l ]) for l = k+ 1, . . . ,n. With these notations, we want to prove the “super-
detailed balance”

π(x)Ak(y | x) = π(y)Ak(x | y).

The detailed balance follows by summing up all possible values ofk in the above equation.
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Note that the derivation of the actual transition functionAk(y | x) involves integrating
over all the remaining “reference points,”y[1:k−1], y[k+1:n] , andx∗[k+1:n] . More precisely, we
have

π(x)Ak(y | x) =
∫
· · ·
∫
π(x)T

(
y[1:n] | x

) ω
(
y[k:1], x

)∑n
j=1ω

(
y[ j :1], x

) min

{
1,

∑n
j=1ω

(
y[ j :1], x

)∑n
j=1ω

(
x∗[ j :1], y

)}
× T

(
x∗[k+1:n]

∣∣ y[k:1], x
)

dy[k+1:n] dx∗[k+1:n] dy[1:k−1] (A.1)

=
∫
· · ·
∫
π(x)T

(
y[1:n]

∣∣ x)π(y)T(x∗[1:n]

∣∣ y)λ(y, x∗[1:k]

)
× min

{
1∑n

j=1ω
(
y[ j :1], x

) , 1∑n
j=1ω

(
x∗[ j :1], y

)}
× dy[k+1:n] dx∗[k+1:n] dy[1:k−1]. (A.2)

Here functionλ is any positive and “sequentially symmetric” function, i.e.,

λ
(
y, x∗[1:k]

) = λ(x∗[k:1], y
)
.

To see that expression (A.2) is symmetric inx andy, we simply exchange the notations
of x andy, andx∗j andy j , respectively. Becauseλ is sequentially symmetric, we have

λ
(
y, x∗[1:k]

) = λ(x∗[k:1], y
) ≡ λ(x, y[1:k]

)
.

Thus, expression (A.2) does not change its value after the above notational exchange. This
concludes the proof of the super-detailed balance condition

π(x)Ak(x, y) = π(y)Ak(y, x).

A.2. Random-Grid Metropolis

For this algorithm, we have

π(x)Ak(x, y) = π(x)
∫

R
g(r )

π(y)∑n
j=1π(y j )

min

{
1,

∑n
j=1π(y j )∑n−k

j=0 π(x
∗
j )+

∑k−1
j=1π(y j )

}
dr

= π(x)
∫

g(r )
π(y)∑n

j=1π(x+ jr , x)
min

{
1,

∑n
j=1π(x+ jr , x)∑n
j=1π(y− jr , y)

}
dr

= π(x)
∫

g(r )π(y)min

{
1∑n

j=1π(x+ jr , x)
,

1∑n
j=1π(y− jr , y)

}
dr.

The above expression is apparently symmetric inx andy, thus we proved thatπ(x)Ak(x, y) =
π(y)Ak(y, x), which is the detailed balance condition.
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For two-sided random-grid Metropolis, the proof is very similar,

π(x)Ak(x, y) = π(x)
∫

g(r )
π(y)∑

j π(y± jr )
min

{
1,

∑
j π(y± jr )∑
j π(x± jr )

}
dr

= π(x)
∫

g(r )
π(y)∑

j π(x± jr )
min

{
1,

∑
j π(x± jr )∑
j π(y± jr )

}
dr

= π(x)
∫

g(r )π(y)min

{
1∑

j π(x± jr )
,

1∑
j π(y± jr )

}
dr.

The above expression is symmetric inx andy; the detailed balance is proved.
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